Synthesis of cis-[Pt(CECR $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and trans $-\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ Complexes. Crystal and Molecular Structures of cis-[Pt\{CECC(OH)$\left.\left.\mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, trans $-\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$, and trans- $\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO} .+$ Influence of Bases and their Concentration on the Reactivity of cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

Anita Furlani, Silvia Licoccia, and Maria V. Russo
Dipartimento di Chimica, Università degli Studi di Roma 'la Sapienza,' 00185 Roma, Italy Angiola Chiesi Villa and Carlo Guastini
Istituto di Strutturistica Chimica, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., 43100 Parma, Italy

Abstract

Complexes cis $-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{R}=\mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}, \mathrm{C}(\mathrm{OH}) \mathrm{MeEt}, \mathrm{CH}(\mathrm{OH}) \mathrm{Ph}\right.$, or Ph$]$ can be obtained from cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{HC} \equiv \mathrm{CR}$ in 30% aqueous ammonia as solvent. Complexes trans$\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}(\mathrm{OH}) \mathrm{Me}, \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}, \mathrm{C}(\mathrm{OH}) \mathrm{MeEt}, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OH}\right.$, or $\mathrm{CH}_{2} \mathrm{NEt}_{2}$] are obtained by using chloroform (or dichloromethane)-diethylamine as solvent. No dehydration reactions of the acetylenic alcohols are observed. X-Ray analyses on cis- $\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, trans $-\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$, and trans $-\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$ revealed in the cis complex the presence of a water molecule forming two strong hydrogen bonds with the two cis-oriented hydroxy-groups of the acetylide ligands. In all the complexes the coordination around platinum is distorted square planar with the acetylide ligands σ-bonded to platinum. Crystallographic details : cis- $\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, monoclinic, space group $\mathrm{P} 2_{1} / c$, with $a=15.473(5), b=21.725(6), c=13.439(4) \AA, \beta=113.95(3)^{\circ}$, and $Z=4 ; R 0.052$ for 3110 observed reflections; trans- $\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$, triclinic, space group P^{\top}, with $a=11.695(3), b=19.690(6), c=9.214(2) \AA, \alpha=101.88(3), \beta=104.26(3), \gamma=85.55(3)^{\circ}$, and $Z=2 ; R=0.053$ for 3961 observed reflections; $\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$, triclinic, space group $P \overline{1}$, with $a=15.544(6), b=12.567(4), c=11.719(3) \AA, \alpha=91.12(3), \beta=105.36(3)$, $\gamma=111.39(3)^{\circ}$, and $Z=2 ; R=0.046$ for 4704 observed reflections. The influence of $\mathrm{NH}_{3}, \mathrm{NHEt}_{2}$, and $\mathrm{H}_{2} \mathrm{NNH}_{2}$ on the reactivity of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with monosubstituted acetylenes is discussed.

We have previously found that cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is an active catalyst for the linear polymerization of phenylacetylene and 2-methylbut-3-yn-2-ol. ${ }^{1,2}$ Complexes with $\mathrm{Pt}^{-} \mathrm{C} \sigma$ bonds could be active intermediates. In an attempt to confirm this hypothesis we tried to prepare $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] complexes following the procedure reported by Chatt and Shaw. ${ }^{3}$ We obtained trans- $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and cis- and trans- $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ from phenylacetylene, ${ }^{4}$ but failed to obtain analogous complexes from 2-methylbut-3-yn-2-ol.

With the aim of establishing general synthetic methods for platinum acetylides we studied the reactivity of cis-[$\mathrm{PtCl}_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$] with monosubstituted acetylenes in the presence of bases. In this paper we report the reaction conditions under which cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and trans- $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes can be prepared, avoiding dehydration of any hydroxy-substituents of the acetylene. We also discuss the reactivity of cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with monosubstituted acetylenes in the presence of $\mathrm{NH}_{3}, \mathrm{NHEt}_{2}$, and $\mathrm{H}_{2} \mathrm{NNH}_{2}$.

[^0]
Results and Discussion

cis- $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad$ Complexes.-The complex cis$\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was the first example of a bis(triphenylphosphine)platinum bis(acetylide) ${ }^{4}$ of cis configuration; its structure was confirmed by X-ray analysis. ${ }^{5}$ Cullen and Hou ${ }^{6}$ prepared cis- $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in 9% yield by treating tetrakis(triphenylphosphine)platinum(0) in benzene with 3,3,3-trifluoropropyne for 5 months at room temperature. Its structure was assigned on the basis of ${ }^{19} \mathrm{~F}$ n.m.r. spectroscopy. Earlier, Harbourne and Stone ${ }^{7}$ had reported that 3,3,3-trifluoropropyne reacts under similar conditions to yield the η bonded complex $\left[\mathrm{Pt}\left(\mathrm{HC} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ after 2 weeks.

From the reaction between cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{HC} \equiv \mathrm{CR}$ $\left[\mathrm{R}=\mathrm{Ph}, \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}, \mathrm{C}(\mathrm{OH}) \mathrm{MeEt}\right.$, or $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{Ph}\right]$ in 30% aqueous ammonia under reflux for a few minutes (see Experimental section) we have now obtained cis-bis(acetylides), although in mixtures with their trans isomers. The cis complexes can be isolated by fractional crystallization from ben-zene-ethanol at room temperature (Table 1).

The cis structure was confirmed by X-ray analysis of the complex cis-[$\left.\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (see below), which revealed the presence of a water molecule in $1: 1$ stoicheiometry.

The i.r. spectrum of $c i s-\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ exhibits a band at $3540 \mathrm{~cm}^{-1}$ (free OH), and a broad band between 3450 and $3150 \mathrm{~cm}^{-1}$, with two unresolved maxima at ca. 3320 and $3280 \mathrm{~cm}^{-1}$, indicating hydrogen bonding, as confirmed by the X-ray analysis (see below). A doublet at $2165-2145 \mathrm{~cm}^{-1}$ can be attributed to the $\mathrm{C} \equiv \mathrm{C}$ stretching

Table 1. Analytical and spectral data for the cis- $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes

R	Yield (\%)	M.p. ($\theta /{ }^{\circ} \mathrm{C}$)	Analyses (\%) ${ }^{\text {a }}$		I.r. ${ }^{\text {b }}\left(\mathrm{cm}^{-1}\right)$		$\underset{\lambda_{\text {max. }}}{\text { U.v. }} \mathrm{nm}{ }^{\text {c }}$
			C	H	$v(\mathrm{OH})$	$v(\mathrm{C}=\mathrm{C})$	
$\mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}$	60	180-183	$\begin{gathered} 61.4 \\ (61.1) \end{gathered}$	$\begin{array}{r} 5.35 \\ (5.5) \end{array}$	$\begin{aligned} & 3540 \\ & 3320 \mathrm{br} \\ & 3280 \mathrm{br} \end{aligned}$	$\begin{aligned} & 2165 \\ & 2145 \end{aligned}$	$\begin{aligned} & 286 \\ & 275 \end{aligned}$
$\mathrm{C}(\mathrm{OH}) \mathrm{MeEt}$	40	184-187	$\begin{aligned} & 62.3 \\ & (61.85) \end{aligned}$	$\begin{gathered} 5.5 \\ (5.4) \end{gathered}$	3510	2130	$\begin{aligned} & 285 \\ & 275 \text { (sh) } \end{aligned}$
					3320 br		
					3280 br		
$\mathrm{CH}(\mathrm{OH}) \mathrm{Ph}$	35	161-164	$\begin{aligned} & 65.3 \\ & (64.85) \end{aligned}$	$\begin{aligned} & 4.9 \\ & (4.65) \end{aligned}$	3 420br	$\begin{aligned} & 2125 \\ & 2100 \\ & 2125 \end{aligned}$	$\begin{aligned} & 285 \\ & 275 \text { (sh) } \\ & 314 \end{aligned}$
Ph	30	206-208	67.8	4.35			
			(67.75)	(4.35)			

${ }^{a}$ Calculated values in parentheses, for $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ unless otherwise indicated. ${ }^{b}$ Nujol mull. ${ }^{〔} \mathrm{CHCl}_{3}$ solution. ${ }^{4} \mathrm{For}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$].

Table 2. Reaction conditions, ${ }^{a}$ and analytical and spectral data for the $\operatorname{trans}-\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes

	Amount/mmol		Solvent ${ }^{\text {b }}$	t/min	Yield (\%)	$\begin{gathered} \text { M.p. } \\ \left(\theta /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\underbrace{\text { Analyses (\%) }}{ }^{\text {r }}$			I.r. ${ }^{\text {d }}\left(\mathrm{cm}^{-1}\right)$			$\stackrel{\text { U.v. }}{\lambda_{\text {max. }} / \mathrm{nm}}$
R	$\mathrm{HC}=\mathrm{CR}$	NHEt_{2}					C	H	Cl	$v(\mathrm{OH})$	$v \mathrm{C}=\mathrm{C}$)	$v(\mathrm{Pt}-\mathrm{Cl})$	
$\mathrm{CH}_{2} \mathrm{OH}$	9	3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15	47.5	238-241	$\begin{gathered} 58.0 \\ (57.8) \end{gathered}$	$\begin{gathered} 4.15 \\ (4.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.4) \end{gathered}$	3580	2150	300	295 (sh)
$\mathrm{CH}(\mathrm{OH}) \mathrm{Me}$	7	8	CHCl_{3}	15	51.0	190-193	$\begin{gathered} 58.1 \\ (58.3) \end{gathered}$	$\begin{aligned} & 4.4 \\ & (4.3) \end{aligned}$	$\begin{aligned} & 4.7) \\ & (4.3) \end{aligned}$	3480 br	2140	320	295 (sh)
$\mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}$	10	8	CHCl_{3}	120	60.0	201-203	$\begin{gathered} 60.4 \\ (60.5) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.7) \end{gathered}$	$\begin{aligned} & 4.0)^{4.0} \\ & (3.9)^{f} \end{aligned}$	3590	2120	320	295 (sh)
C (OH) MeEt	8	8	CHCl_{3}	120	62.0	172-174	$\begin{gathered} 60.85 \\ (60.1) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.6) \end{gathered}$	$\begin{aligned} & 4.15 \\ & (3.95)^{g} \end{aligned}$	$\begin{aligned} & 3600 \\ & 3580 \text { (sh) } \end{aligned}$	2130	315	295 (sh)
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OH}^{4}$	7	8	CHCl_{3}	120	45.0	228-229	$\begin{aligned} & 63.5 \\ & (63.05) \end{aligned}$	$\begin{array}{r} 5.2 \\ (5.2) \end{array}$	$\begin{aligned} & 2.60 \\ & (3.65) \end{aligned}$	$\begin{aligned} & 3580 \\ & 3550 \text { (sh) } \end{aligned}$	2130	330	295 (sh)
$\mathrm{CH}(\mathrm{OH}) \mathrm{Ph}$	8	8	CHCl_{3}	15	10.0	205-208	$\begin{gathered} 61.4 \\ (61.0) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.0) \end{gathered}$	3585	$\begin{aligned} & 2120 \\ & 2100 \end{aligned}$	320	295 (sh)
$\mathrm{CH}_{2} \mathrm{NEt}_{2}$	3.5	3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	60	20.0	204-206	$\begin{gathered} 59.85 \\ (59.7) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.9) \end{gathered}$	$\begin{array}{r} 4.5) \\ 4.55 \\ (4.1) \end{array}$		2140	320	$256{ }^{\text {j }}$

${ }^{a}$ In all reactions 0.63 mmol of cis-[$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was used. ${ }^{b} 40 \mathrm{~cm}^{3}$. ${ }^{c}$ Calculated values in parentheses. ${ }^{d}$ Nujol mull. ${ }^{e}$ In CHCl_{3} solution unless otherwise indicated. ${ }^{f} \mathrm{Calc}$. for $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe} .{ }^{\text {a }} \mathrm{Calc}$. for $\left[\mathrm{PtCl}(\mathrm{C}=\mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$. ${ }^{1} 1-\mathrm{Hydroxycyclohexyl}$. ${ }^{\prime}$ Calc. for $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{PhMe}$. ${ }^{\mathrm{J}}$ In EtOH solution.
vibration and a strong band is observed at $1660 \mathrm{~cm}^{-1}$. The i.r. spectra of the other cis complexes of the acetylenic alcohols are similar (see Table 1).
A single band at ca. $2125 \mathrm{~cm}^{-1}$ is present in the spectra of cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{R}=\mathrm{C}(\mathrm{OH}) \mathrm{MeEt}$ and Ph$]$ however. It is noteworthy that some trans complexes exhibit split bands at ca. $2100 \mathrm{~cm}^{-1} .{ }^{8}$ A splitting of the $\mathrm{C} \equiv \mathrm{C}$ stretching absorption into a doublet cannot thus be taken as an indication of the cis structure of bis(triphenylphosphine)platinum bis(acetylides). The presence of an intense absorption at $540 \mathrm{~cm}^{-1}$ in the i.r. spectra of all the complexes listed in Table 1, as previously reported, ${ }^{9,10}$ may instead be considered to be proof of the presence of two triphenylphosphine molecules in a cis orientation.
From the reaction between cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and phenylacetylene in 30% aqueous ammonia the cis-bis(acetylide) complex can be separated by chromatography on a silica column. 1,4-Diphenylbutadiyne and $\left[\mathrm{Pt}(\eta-\mathrm{HC} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ were also formed (see Experimental section).

The side reactions probably take place through a mechanism involving reductive elimination of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to form [$\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, favoured by the presence of the base, and oxidative dimerization of $\mathrm{HC} \equiv \mathrm{CPh}$ to form $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CPh}$. The active species $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ would then react with phenylacetylene in excess to give $\left[\mathrm{Pt}(\eta-\mathrm{HC} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The overall process can be formulated as in reaction (i).

$2 \mathrm{NH}_{4} \mathrm{Cl}$
(i)

Evidence for the formation of dimerization products of the acetylenic radicals was obtained only in the reaction with phenylacetylene.

Attempts were made to prepare cis complexes from cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{OH}, \quad \mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{10} \mathrm{OH}, \mathrm{HC} \equiv$ $\mathrm{CCH}(\mathrm{OH}) \mathrm{Me}$ and $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$ under similar conditions. The compound $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{OH}$ gave a crude mixture from which trans- $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $[\mathrm{Pt}(\eta-$ $\left.\mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)\left(\mathrm{PPh}_{3}\right)_{2}$] could be separated in low yield, but no cis-bis(acetylide) could be obtained. The reactions with the other acetylenes gave complex mixtures of products. Attempted purification by fractional crystallization or column chromatography led only to the more stable trans isomers.
trans- $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ Complexes.-The complex cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ reacts with acetylenes in CHCl_{3}, in the presence of $\mathrm{NHEt}_{2}\left(\mathrm{NHEt}_{2}: \mathrm{HC}=\mathrm{CR}\right.$ molar ratio ca. 1:1), giving trans$\left[\mathrm{PtCl}(\mathrm{C}=\mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes (Table 2). Intramolecular dehydration of the hydroxy-groups of acetylenic alcohols, previously observed under similar conditions, ${ }^{10}$ does not take place. T.l.c. shows the presence of trans-bis(acetylide) complexes as side products. however.

Monochloroacetylides were purified by fractional crystallization from various solvents. Chromatography on silica gel columns is unsatisfactory because of the occurrence of intraor inter-molecular dehydration involving the hydroxy groups of the acetylene ligand.
X-Ray analyses of trans- $\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

Figure 1. I.r. spectra of trans- $\left[\mathrm{PtCl}\left\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ crystallized from: (a) toluene; (b) benzene-acetone; (c) benzene-tbutyl alcohol; (d) dichloromethane-diethyl ether
and trans- $\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ reveal the presence of solvent molecules (see below).

The i.r. spectra of the trans- $\left[\mathrm{PtCl}(\mathrm{C}=\mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes show a band at ca. $320 \mathrm{~cm}^{-1}$, due to the $\mathrm{Pt}^{-} \mathrm{Cl}$ stretching vibration. A band at $540 \mathrm{~cm}^{-1}$ is of low intensity, as in the spectra of other trans-bis(triphenylphosphine)platinum complexes. ${ }^{9}$ The OH stretching band occurs at ca. $3600 \mathrm{~cm}^{-1}$.

In the region $800-600 \mathrm{~cm}^{-1}$ (Figure 1) different features are observed in the i.r. spectra of trans $-\left[\mathrm{PtCl}\left\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] recrystallized from various solvent mixtures. Similar modifications of i.r. spectra have been observed previously for different crystalline adducts of $\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{11,12}$ and for $\left[\mathrm{PtH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right] .^{13}$

Structural Features.-cis- $\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Complex (1). The structure consists of monomeric units (Figure 2) where platinum is co-ordinated via σ bonds to two acetylide ligands and two triphenylphosphine molecules in a nearly square-planar cis arrangement (Tables 3 and 4). The water molecule, which was detected by the X-ray analysis, is not simply a crystallization molecule, but plays an important role in stabilizing the cis complex. The water oxygen atom forms two strong hydrogen bonds with the two cis-oriented hydroxy-groups acting as a donor atom (Table 3 and Figure 2). As a consequence of the presence of the hydrogen bonds and of steric interactions between the ligands, the bond angles around Pt differ from the 90° for a regular square-planar arrangement, ranging from $84.4(5)$ to $98.7(2)^{\circ}$, the largest value involving the bulky cis-triphenylphosphines (Table 3). The $\mathrm{Pt}^{-} \mathrm{C}$ distances $\left[\mathrm{Pt}^{-} \mathrm{C}(1)\right.$ 2.02(2) and $\mathrm{Pt}^{-} \mathrm{C}(6)$ 1.99(2) \AA]

Figure 2. The structure of complex (1), cis- $\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table 3. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for cis- $\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}(1)$

$\mathrm{Pt}-\mathrm{C}(1)$	$2.02(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.51(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.51(2)$	$\mathrm{P}(1)-\mathrm{C}(21)$	$1.83(1)$
$\mathrm{Pt}-\mathrm{C}(6)$	$1.99(2)$	$\mathrm{C}(3)-\mathrm{O}(1)$	$1.41(2)$	$\mathrm{C}(8)-\mathrm{O}(2)$	$1.45(2)$	$\mathrm{P}(1)-\mathrm{C}(31)$	$1.83(1)$
$\mathrm{Pt}-\mathrm{P}(1)$	$2.307(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.52(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.49(3)$	$\mathrm{P}(2)-\mathrm{C}(41)$	$1.82(1)$
$\mathrm{Pt}(\mathrm{P}(2)$	$2.331(5)$	$\mathrm{C}(3)-\mathrm{C}(5)$	$1.49(3)$	$\mathrm{C}(1)-\mathrm{C}(10)$	$1.56(3)$	$\mathrm{P}(2)-\mathrm{C}(51)$	$1.85(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.17(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.19(2)$	$\mathrm{P}(1)-\mathrm{C}(11)$	$1.84(1)$	$\mathrm{P}(2)-\mathrm{C}(61)$	$1.83(1)$
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(2 \mathrm{~W})$	1.05	$\mathrm{O}(1 \mathrm{~W}) \cdots \mathrm{O}(1)$	$2.73(2)$	$\mathrm{O}(1) \cdots \mathrm{O}\left(2^{\text {i }}\right)^{*}$	$2.81(2)$	$\mathrm{H}(1 \mathrm{~W}) \cdots \mathrm{O}(2)$	1.60
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W})$	1.14	$\mathrm{O}(1 \mathrm{~W}) \cdots \mathrm{O}(2)$	$2.69(2)$	$\mathrm{H}(2 \mathrm{~W}) \cdots \mathrm{O}(1)$	1.85	$\mathrm{H}(1) \cdots \mathrm{O}\left(2^{\prime}\right)^{*}$	1.98
$\mathrm{O}(1)-\mathrm{H}(1)$	0.93						

$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}(6)$	$84.5(6)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$109(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$110(2)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$	$105.0(5)$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(6)$	$84.4(5)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110(1)$	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(10)$	$107(2)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	$109.3(5)$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(1)$	$168.1(5)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(5)$	$113(1)$	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$113(2)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(41)$	$115.0(4)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(6)$	$176.3(5)$	$\mathrm{O}(1-\mathrm{C}(3)-\mathrm{C}(4)$	$107(1)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	$109(2)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)$	$120.5(4)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(1)$	$92.3(5)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	$110(2)$	$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$	$118.2(4)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(61)$	$109.4(4)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$98.7(2)$	$\mathrm{Pt}-\mathrm{C}(6)-\mathrm{C}(7)$	$178(1)$	$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(21)$	$115.1(4)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(51)$	$103.9(5)$
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$	$177(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$177(2)$	$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(31)$	$109.2(4)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(61)$	$104.9(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$178(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(2)$	$108(1)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$99.1(5)$	$\mathrm{C}(51)-\mathrm{P}(2)-\mathrm{C}(61)$	$101.3(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$107(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(10)$	$110(1)$				
$\mathrm{W}-\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(2 \mathrm{~W})$	133	$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(2 \mathrm{~W})-\mathrm{O}(1)$	139	$\mathrm{O}(1)-\mathrm{H}(1)-\mathrm{O}\left(2^{i}\right) *$	148	$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W})-\mathrm{O}(2)$	

* $\mathrm{i} x, \bar{y}-\frac{1}{2}, z+\frac{1}{2}$.

Table 4. Equations of least-squares planes and, in square brackets, distances (\AA) of atoms from these planes *

Complex (1), cis- $\left[\mathrm{Pt}\left\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Co-ordination plane: $\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{C}(1), \mathrm{C}(6)$
$-0.9632 X+0.0047 Y-0.2687 Z=-3.7002$
$[\mathrm{Pt}-0.006(2), \mathrm{P}(1) 0.006(5), \mathrm{P}(2) 0.010(5), \mathrm{C}(1) 0.140(18), \mathrm{C}(6)$ $0.056(20)$]

Complex (2), trans $-\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$
Co-ordination plane: $\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{Cl}, \mathrm{C}(1)$

$$
0.0415 X-0.3765 Y-0.9255 Z=-2.9609
$$

$[\mathrm{Pt}-0.005(1), \mathrm{P}(1) 0.021(4), \mathrm{P}(2) 0.021(4), \mathrm{Cl}-0.003(4), \mathrm{C}(1)$ $-0.057(16)]$

Complex (3), trans- $\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$ Co-ordination plane: $\mathrm{Pt}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{Cl}, \mathrm{C}(1)$

$$
0.1995 X+0.9582 Y+0.2053 Z=3.2516
$$

$[\mathrm{Pt}-0.028(2), \mathrm{P}(1) 0.043(3), \mathrm{P}(2) 0.043(3), \mathrm{Cl}-0.027(4), \mathrm{C}(1)$ -0.142(9)]

* X, Y, and Z are co-ordinates (\AA) referred to an orthogonal system of axes. The transformation matrix used was:

a	$b \cos \gamma$	$c \cos \beta$
0	$b \sin \gamma$	$-c \sin \beta \cos \alpha$
0	0	$c \sin \beta \sin \alpha$

are in the range of values quoted in the literature ${ }^{14}$ for acetylide trans complexes. Bond distances and angles in the two independent acetylide ligands are normal and the $\mathrm{Pt}-\mathrm{C} \equiv$ C-C systems do not deviate significantly from linearity (Table 3).

The two $\mathrm{Pt}^{-}-\mathrm{P}$ distances $[\mathrm{Pt}-\mathrm{P}(1) 2.307(5)$ and $\mathrm{Pt}-\mathrm{P}(2)$ $2.331(5) \AA$], which fall in the upper part of the range of values observed for trans complexes, ${ }^{14}$ are significantly different, $\mathrm{Pt}^{-} \mathbf{P}(2)$ being longer apparently in order to relieve steric interactions between the ligands. The distances $\mathrm{C}(6) \cdots \mathrm{C}(61)$ 3.14(2), C(6) $\cdots \mathrm{C}(66) 3.25(2), \mathrm{C}(6) \cdots \mathrm{C}(46) 3.32(2), \mathrm{C}(1) \cdots$ $\mathrm{C}(11) 3.28(2)$, and $\mathrm{C}(1) \cdots \mathrm{C}(16) 3.22(2) \AA$ are the shortest intramolecular contacts between the co-ordinating ligands. As observed for trans- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes ${ }^{\text {15 }}$ the largest $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ angles $[\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11) 118.2(4)$ and $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)$ $\left.120.5(4)^{\circ}\right]$ involve the carbon atoms which are close to the co-
ordination plane as indicated by the torsion angles $\mathrm{C}(1)-\mathrm{Pt}_{\mathbf{t}}$ $\mathrm{P}(1)-\mathrm{C}(11)-5.1(6)$ and $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)-13.3(5)^{\circ}$.

Packing is mainly determined by an intermolecular $\mathrm{O}(1)^{-}$ $\mathrm{H}(1) \cdots \mathrm{O}\left(2^{i}\right)$ hydrogen bond (Table 3) involving the hydroxy-groups of adjacent molecules. No other contact is less than the sum of the van der Waals radii. Thus it can be concluded that the $\mathrm{O}(2)-\mathrm{H}$ hydroxy-group, whose hydrogen atom could be not located, is not engaged as a donor in any hydrogen bond, in agreement with the presence in the i.r. spectrum of a band at $3540 \mathrm{~cm}^{-1}$ due to free OH groups.
trans- $\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$, Complex (2), and trans- $\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$, (3). In both complexes the structure consists of monomeric units where the organic ligand, trans to chlorine, is σ bonded to platinum (Figures 3 and 4). The co-ordination geometry is similar in the two complexes apart from some differences in bond angles which are probably due to the substitution of a methyl group by ethyl. The co-ordination around the platinum atom is square planar, with a small tetrahedral displacement (Table 4). The $\mathrm{Pt}^{-} \mathrm{Cl}$ and the $\mathrm{Pt}^{-} \mathrm{C}$ bond distances are compared with values for other complexes in Table 5. It is well known that the trans influence in platinum(II) square-planar complexes has two main components: the electrostatic component and the metal-to-ligand multiple-bond characteristic. The role of both effects can be evaluated from the data in Table 5, when the ligand at Pt is the $-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$ group, and the trans $-\mathrm{Pt}-\mathrm{Cl}$ bond distance is affected. The change in the elec-tron-donating ability of the R substituents should allow the electrostatic effect to be evaluated. A comparison of the $\mathrm{Pt}^{-} \mathrm{Cl}$ bond distances in complexes (2), (3), (5), and (6) (Table 5) suggests that the electrostatic influence has a small effect, all the $\mathrm{Pt}-{ }^{-} \mathrm{Cl}$ distances being similar. The phenyl substituent [complex (4)] has a major influence however. This could be due either to an electrostatic effect or to the influence of conjugation, i.e. metal-carbon multiple-bond formation, which is excluded by the value of the $\mathrm{Pt}-\mathrm{C}$ distance however. The $\mathrm{C} \equiv \mathrm{C}$ unit is a very difficult group to polarize (the differences in the $\mathrm{C} \equiv \mathrm{C}$ bond distance are not significant), and, further, its influence is high per se. Moreover the $\mathrm{Pt}^{-} \mathrm{C}$ bond distances are very similar in the four complexes (2)-(5). The isopropenyl substituent [complex (6)] should provide an example of a complex with $\mathrm{Pt}^{-} \mathrm{C}$ multiple bond which is expected to have a

Figure 3. The structure of complex (2), trans-[PCCl\{C=CC(OH)Me $\left.\left.\mathrm{e}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$

Figure 4. The structure of complex (3), $\operatorname{trans}-\left[\mathrm{PtCl}\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$

Table 5. Selected bond lengths (\AA) for trans- $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes

Complex	(4)	(6)	(2)	(5)	(3)
R	Ph	$\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}$	$\mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{10}(\mathrm{OEt})$	$\mathrm{C}(\mathrm{OH}) \mathrm{MeEt}$
$\mathrm{Pt}-\mathrm{Cl}$	2.407(5)	2.363 (6)	$2.356(5)$	$2.345(5)$	$2.336(4)$
$\mathrm{Pt}-\mathrm{C}$	1.98(2)	1.84(2)	1.95(2)	1.94(2)	1.988(9)
$\mathrm{Pt}-\mathrm{P}$	2.284(5)	2.296(5)	$2.311(4)$	2.307 (4)	2.321 (4)
$\mathrm{Pt}-\mathrm{P}$	$2.325(5)$	2.300 (5)	2.320(4)	2.310(4)	2.320 (4)
$\mathrm{C}=\mathrm{C}$	1.18(3)	1.22(3)	1.18(2)	1.22(2)	1.15(2)
Ref.	20*	12	Present work	19	Present work

* The data are for molecule 2 , molecule 1 being affected by disorder.
large trans influence, but the $\mathrm{Pt}-\mathrm{Cl}$ distance is unexpectedly little affected. The $P-C$ distance in complex (6) may be unusually short owing to a conjugation effect. Unfortunately this effect cannot be demonstrated unequivocally by the sequence of $\mathrm{C}-\mathrm{C}$ bond distances in the organic residues, which have high standard deviations. However, the main conclusion is that even in the presence of a structurally proven $\mathbf{M}-\mathrm{C}$ multiple bond, the $\mathrm{Pt}^{-} \mathrm{Cl}$ distance is only slightly affected.
It is worth noting that in the complexes in Table 5 the $\mathrm{Pt}-\mathrm{P}$ distances [mean 2.308(5) \AA] are significantly longer than those in trans- $\left[\mathrm{PtH}\left\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [mean 2.273(5) $\AA{ }^{16}$] which contains the same organic residue as complex (2), but hydrogen instead of chlorine trans to it. This is probably a consequence of the small size of hydrogen with respect to chlorine which allows the phosphine ligands to approach closer to the metal.
The geometry of the triphenylphosphine ligands is as expected with the $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ angles equal to or greater than tetrahedral values and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles smaller. As usual the largest $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ angles involve the carbon atoms closer to the co-ordination plane. Complex (2): $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(21)$ 119.9(3), $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)$ 116.5(4), $\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(21)-10.5(6), \mathrm{Cl}-$ $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)$ 14.4(4) ${ }^{\circ}$; complex (3): $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(21)$ 118.4(2), $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)$ 117.1(2); $\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(21)-19.3(4), \mathrm{Cl}^{-}$ $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(51)$ 14.4(3) ${ }^{\circ}$.
All the other bond distances and angles are normal except for those involving the ethyl and methyl groups of compound (3) which are affected by high thermal motion. No contact less than the sum of the van der Waals radii is present, so in both structures the hydroxy-groups are free.

Reactivity of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with Acetylenes in the Presence of Bases.-Ammonia. (i) Chatt and Shaw ${ }^{3}$ reported that trans $-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right]$ complexes can be prepared by the reaction of a sodium acetylide, $\mathrm{NaC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}$, or Ph$)$, with $\left[\mathrm{PtCl}_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PEt}_{3}\right.$ or $\left.\mathrm{AsEt}_{3}\right)$ in liquid ammonia. Empsall et al. ${ }^{17}$ prepared several acetylide complexes by using the sodium derivatives of acetylenic alcohols (formed in situ in liquid ammonia) and cis-[$\left.\mathrm{PtCl}_{2} \mathrm{~L}_{2}\right]$ ($\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}$ or $\mathrm{AsMe}_{2} \mathrm{Ph}$). By an analogous procedure we have obtained cisand trans $-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and trans $-[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CPh})-$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{4}$ but the same method did not give good results with 2-methylbut-3-yn-2-ol, because side reactions involving the hydroxy-group take place and complex mixtures of products are formed.
(ii) If the reactions between cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{HC} \equiv \mathrm{CR}$ (see above) are carried out by using 30% aqueous ammonia as solvent, cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes can be obtained even when R contains a hydroxy-group. The stability of the cis complexes depends on the formation of hydrogen bonds between the hydroxy-group of the alcohol ligand and a water molecule, which is trapped between the two ligands in cis positions. When steric requirements inhibit the formation of
hydrogen bonds, the stability of the cis-bis(acetylides) is low and the trans isomers are formed during crystallization.
(iii) When the acetylenic alcohols $\mathrm{HC} \equiv \mathrm{CR}[\mathrm{R}=\mathrm{C}(\mathrm{OH})$ $\mathrm{Me}_{2}, \mathrm{C}(\mathrm{OH}) \mathrm{MeEt}$, or $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OH}\right]$ are refluxed with cis[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in the presence of a few drops of 30% aqueous ammonia for $10-15 \mathrm{~min}$, the trans-bis(acetylides) $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CR}^{\prime}\right)_{2}{ }^{-}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] are obtained. ${ }^{10}$ Intramolecular dehydration of the tertiary hydroxy-groups takes place, however, and complexes of alkenylalkynes are formed (i.e. R^{\prime} is an alkenyl rather than a hydroxyalkyl group).

A similar dehydration was observed when the tertiary acetylenic alcohols were refluxed for ca. 12 h with cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] in chloroform, without addition of a base; trans$\left[\mathrm{PtCl}\left(\mathrm{C}=\mathrm{CR}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes were formed. Substitution of both chloro-substituents by acetylenic radicals is difficult in the absence of a base but the intramolecular dehydration still occurs. ${ }^{10}$

Diethylamine. (i)In a previous investigation we found that if NHEt_{2} is used as solvent, the reaction between cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the acetylenes $\mathrm{HC} \equiv \mathrm{CR}\left\{\mathrm{R}=\mathrm{Ph}, \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right.$, $\left[\mathrm{CH}_{2}\right]_{6} \mathrm{C} \equiv \mathrm{CH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}(\mathrm{OH}) \mathrm{Me}, \mathrm{CH}(\mathrm{OH}) \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{CH}-$ (OH) Me, $\mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}, \mathrm{C}(\mathrm{OH}) \mathrm{MeEt}, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{NHMe}$, $\mathrm{CH}_{2} \mathrm{NMe}_{2}, \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ph}$, or $\mathrm{CH}_{2} \mathrm{NEt}_{2}$ \}, under reflux for a few minutes (in the presence of CuI as a catalyst) gives trans$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes in high yields. ${ }^{8}$ Diethylamine facilitates the elimination of HCl and the formation of $\mathrm{Pt}-\mathrm{C} \sigma$ bonds, and inhibits dehydration reactions.
(ii) Complexes trans $-\left[\mathrm{PtCl}(\mathrm{C}=\mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ can be obtained from acetylenic alcohols when cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ reacts with $\mathrm{HC} \equiv \mathrm{CR}$ (R includes a hydroxy-substituent) in chloroform in the presence of diethylamine (ratio of NHEt_{2} to $\mathrm{HC} \equiv \mathrm{CR}$ ca. 1:1). No dehydration of the tertiary hydroxy-groups takes place under these conditions.

Hydrazine. (i) Complexes $\left[\mathrm{Pt}(\mathrm{\eta}-\mathrm{HC} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are obtained in the reaction between cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and acetylenes in the presence of hydrazine or other reducing agents. ${ }^{18-20}$ Keubler et al. ${ }^{21}$ studied in detail the reaction between cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and hydrazine and found that $\left[\mathrm{Pt}\left(\mathrm{N}_{2} \mathrm{H}\right)_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{X},\left[\mathrm{PtH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right]$, and $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ were formed depending on the relative amounts of hydrazine and platinum complex. During our investigation of the reaction between cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me}) \equiv \mathrm{CH}_{2}$ in the presence of hydrazine, we found that $\left[\mathrm{Pt}\left\{\eta-\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, trans- $\left[\mathrm{PtCl}\left\{\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, and trans- $[\mathrm{Pt}\{\mathrm{C} \equiv$ $\left.\left.\mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left\{\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ could be obtained depending on the exact conditions (see Experimental section and ref. 22 for details). The reaction between cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and phenylacetylene in ethanol in the presence of hydrazine hydrate gives a mixture of trans- $\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})$ $\left.\left\{\mathrm{C}(\mathrm{Ph})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}(\eta-\mathrm{HC} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The complexes $\left[\mathrm{PtCl}\left\{\mathrm{C}(\mathrm{R})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})\left\{\mathrm{C}(\mathrm{R})=\mathrm{CH}_{2}\right\}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{R}=\mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right.$ or Ph$]$ are products of insertion of the acetylenes $\mathrm{HC}=\mathrm{CR}$ into the $\mathrm{Pt}^{-} \mathrm{H}$ bond of $[\mathrm{PtH}(\mathrm{Cl})-$

Table 6. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for cis- $\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (1)

Atom	X / a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
$\mathrm{Pt}(1)$	2550 (1)	126(1)	478(1)	C(25)	4861 (6)	1960 (4)	3 689(8)
$\mathrm{P}(1)$	2737 (3)	760(2)	$1928(4)$	C(26)	$4019(6)$	1 625(4)	3 304(8)
$P(2)$	$2374(3)$	880(2)	-825(3)	C(31)	1 680(6)	$1235(4)$	$1581(9)$
O(1)	2326 (10)	-2164(5)	1640 (10)	C(32)	818(6)	936(4)	$1031(9)$
O(2)	$2508(10)$	$-1772(5)$	-2 100(10)	C(33)	-28(6)	$1261(4)$	739(9)
C(1)	2560 (11)	-641(7)	$1339(12)$	C(34)	-11(6)	$1884(4)$	998(9)
C(2)	2 524(11)	-1089(7)	$1802(14)$	C(35)	851(6)	$2182(4)$	1 548(9)
C(3)	2510 (12)	$-1678(7)$	2 396(12)	C(36)	1 697(6)	$1858(4)$	1840 (9)
C(4)	3 478(15)	- $1794(8)$	3 297(15)	C(41)	3 340(6)	926(5)	- 1 267(8)
C(5)	$1786(20)$	- 1 624(9)	2 863(23)	C(42)	3 465(6)	$1445(5)$	- 1 806(8)
C(6)	2346 (12)	-459(7)	-734(13)	C(43)	4 203(6)	$1464(5)$	-2149(8)
C(7)	$2211(11)$	-797(7)	-1481(14)	C(44)	4816 (6)	965(5)	-1 953(8)
C(8)	$1985(13)$	- $1204(8)$	-2 462(14)	C(45)	4 691(6)	446(5)	-1414(8)
C(9)	946(15)	- 1 304(10)	- 3 022(17)	C(46)	3 953(6)	427(5)	-1071(8)
C(10)	$2338(15)$	-895(9)	- 3 273(14)	C(51)	$2156(7)$	$1691(4)$	- 576(9)
O(IW)	$2925(12)$	-1917(5)	31(10)	C(52)	$1222(7)$	$1890(4)$	- 930(9)
C(11)	2921 (7)	401(4)	3 236(7)	C(53)	$1028(7)$	$2500(4)$	- 768(9)
C(12)	2 424(7)	609(4)	3 835(7)	C(54)	$1769(7)$	$2911(4)$	-252(9)
C(13)	2 662(7)	394(4)	4 892(7)	C(55)	2 704(7)	$2712(4)$	101(9)
C(14)	3 397(7)	-28(4)	5 350(7)	C(56)	$2897(7)$	$2102(4)$	-60(9)
C(15)	3 894(7)	-236(4)	4 751(7)	C(61)	$1324(6)$	$711(5)$	-2 064(7)
C(16)	3 656(7)	-22(4)	3 694(7)	C(62)	$1263(6)$	865(5)	-3098(7)
C(21)	3781 (6)	$1256(4)$	$2381(8)$	C(63)	427(6)	758(5)	-4011(7)
C(22)	4 384(6)	$1222(4)$	1843 (8)	C(64)	-348(6)	496(5)	-3890(7)
C(23)	5 225(6)	$1557(4)$	2 228(8)	C(65)	-287(6)	342(5)	-2 856(7)
C(24)	5 464(6)	$1926(4)$	3151 (8)	C(66)	549(6)	449(5)	$-1943(7)$

$\left(\mathrm{PPh}_{3}\right)_{2}$], which is formed as an intermediate in the reaction between $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and hydrazine, and are also obtained if $\left[\mathrm{PtH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is used as starting material. ${ }^{22}$

From the reaction between cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and acetylenic alcohols in the presence of hydrazine we obtained only the complexes $\left[\mathrm{Pt}(\eta-\mathrm{HC} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}(\mathrm{OH})-\right.$ $\mathrm{Me}, \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}, \mathrm{C}(\mathrm{OH}) \mathrm{MeEt}$, or $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OH}\right]$ in good yields. ${ }^{20}$ Therefore the reaction mechanisms depend largely on the substituent R of the acetylenes.

Experimental

All chemicals were reagent grade and were used without further purification. The complex cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was prepared according to the literature method. ${ }^{23}$
I.r. spectra were recorded on a Perkin-Elmer model 580-B spectrometer for Nujol mulls, u.v. spectra on a Beckman DK-2A spectrophotometer for solutions in CHCl_{3}. Elemental analyses were carried out by the Laboratorio di Microanalisi, Istituto di Chimica Farmaceutica, Pisa, Italy. Analytical and physical data are in Tables 1 and 2.

Syntheses.-cis- $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad\left[\mathrm{R}=\mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}\right.$, $\mathrm{C}(\mathrm{OH}) \mathrm{MeEt}$, and $\mathrm{CH}(\mathrm{OH}) \mathrm{Ph}]$. A suspension of cis-[$\mathrm{PtCl}_{2^{-}}$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right](0.5 \mathrm{~g}, 0.63 \mathrm{mmol})$, in 30% aqueous ammonia (30 cm^{3}) with the acetylenic alcohol $\mathrm{HC} \equiv \mathrm{CR}$ ($c a .5 \mathrm{mmol}$) was refluxed for 15 min . The products were obtained by addition of absolute ethanol ($30 \mathrm{~cm}^{3}$) and purified by recrystallization from benzene-ethanol.
cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. A suspension of cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right](0.5 \mathrm{~g}, 0.63 \mathrm{mmol})$ in 30% aqueous ammonia ($30 \mathrm{~cm}^{3}$) with $\mathrm{HC} \equiv \mathrm{CPh}$ (ca. 5 mmol) was stirred at room temperature for 5 min . The crude product, obtained by addition of absolute ethanol (ca. $30 \mathrm{~cm}^{3}$), was chromatographed on a silica gel column. Elution with CHCl_{3} gave four fractions, containing (in order) 1,4-diphenylbutadiyne, trans- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, trans- $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$, and cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{4}$ Crystallization of the crude reaction mixture from CHCl_{3} -

EtOH sometimes led to the complex $\left[\mathrm{Pt}(\eta-\mathrm{HC} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right]$, which decomposes on attempted chromatography.
trans- $\left[\mathrm{PtCl}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The preparation of trans$\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is typical. The complex cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.5 \mathrm{~g}, 0.63 \mathrm{mmol}), \mathrm{HC} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\left(1 \mathrm{~cm}^{3}\right.$, 10 mmol), and diethylamine ($0.8 \mathrm{~cm}^{3}, 8 \mathrm{mmol}$) were added to CHCl_{3} ($40 \mathrm{~cm}^{3}$) and the mixture was refluxed for 2 h . On addition of acetone $\left(50 \mathrm{~cm}^{3}\right)$ the product separated as a white microcrystalline powder which was recrystallized from toluene (or benzene)-acetone ($1: 2$).

Optimum conditions for the preparation of the other [$\mathrm{PtCl}-$ $\left.(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complexes are in Table 2.
trans $-\left[\mathrm{PtCl}\left\{\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] . \quad$ Hydrazine hydrate $(7.2 \mathrm{mmol})$ was added dropwise to a suspension of cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.25 \mathrm{mmol})$ in absolute ethanol $\left(10 \mathrm{~cm}^{3}\right)$. The compound $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}(10.6 \mathrm{mmol})$ was added to the resultant clear solution, and the mixture refluxed for $c a .5$ min . On cooling to $0^{\circ} \mathrm{C}$, the product was obtained in $\mathrm{ca} .80 \%$ yield.
trans $-\left[\mathrm{Pt}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left\{\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$. Hydrazine hydrate (10 mmol) was added dropwise to a suspension of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.50 \mathrm{mmol})$ in absolute ethanol ($40-50 \mathrm{~cm}^{3}$). The compound $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$ (21.2 mmol) was added to the resultant clear solution, and the mixture refluxed for $c a .90 \mathrm{~min}$. After $1-2 \mathrm{~d}$ at $0^{\circ} \mathrm{C}$, the product was obtained in $\mathrm{ca} 50 \$.$% yield.$
$\left[\mathrm{Pt}\left\{\eta-\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The complex cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.25 \mathrm{mmol})$ was suspended in a small volume of absolute ethanol (ca. $4 \mathrm{~cm}^{3}$) and hydrazine hydrate (7.2 $\mathrm{mmol})$ added dropwise. The compound $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$ $(21.2 \mathrm{mmol})$ was added to the resultant clear solution and the mixture refluxed for $c a .20 \mathrm{~min}$. On cooling the product was obtained in $c a .60 \%$ yield.

Crystal Structure Determinations.-cis- $[\mathrm{Pt}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH})$ $\left.\left.\mathrm{Me}_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}(1)$, $\operatorname{trans}-\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot$ 0.5 PhMe (2), and trans- $\left[\mathrm{PtCl}\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. $\mathrm{Me}_{2} \mathrm{CO}$ (3) were mounted on a Philips PW 1100 diffractometer

Table 7. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for $\operatorname{trans}-\left[\mathrm{PtCl}\left\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}$ (2)

Atom	X/a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
Pt	2 887(1)	2 033(1)	$2139(1)$	C(26)	50(8)	3 073(4)	287(11)
Cl	2999 (3)	1013(2)	3 134(5)	C(31)	130(8)	$1408(4)$	387(10)
$\mathrm{P}(1)$	876(3)	2 067(2)	1943 (4)	C(32)	- 1094 (8)	$1438(4)$	-153(10)
$\mathbf{P}(2)$	4 896(3)	2000 (2)	2 266(4)	C(33)	-1649(8)	932(4)	- $1365(10)$
$\mathrm{O}(1)$	2 099(16)	4 523(9)	638(26)	C(34)	-982(8)	396(4)	-2 036(10)
C(1)	2 866(12)	2 890(8)	$1376(18)$	C(35)	241 (8)	366(4)	- $1495(10)$
C(2)	2 942(13)	3 409(8)	959(18)	C(36)	797(8)	872(4)	-283(10)
C(3)	3 120(18)	4067 (8)	467(23)	C(41)	5 161(8)	2146 (5)	501(9)
C(4)	3 236(29)	3 934(11)	-1156(24)	C(42)	4 409(8)	1849 (5)	-873(9)
C(5)	$4158(24)$	4 442(13)	$1512(32)$	C(43)	4 602(8)	$1942(5)$	-2 254(9)
C(71)	1046 (31)	4 613(21)	4 784(46)	C(44)	5 546(8)	$2332(5)$	- 2260 (9)
C(72)	625(49)	$5178(30)$	4 005(50)	C(45)	6 298(8)	2 629(5)	-885(9)
C(73)	-439(44)	$5472(22)$	4 046(45)	C(46)	$6105(8)$	2 536(5)	496(9)
C(77)	2 029(50)	4364 (18)	4 587(69)	C(51)	5 689(9)	1 190(4)	2 552(12)
C(11)	569(9)	$1921(5)$	3 705(9)	C(52)	$6077(9)$	752(4)	1362 (12)
C(12)	1 263(9)	2 270(5)	5 074(9)	C(53)	6 630(9)	115(4)	1580 (12)
C(13)	1 072(9)	2 187(5)	6 463(9)	C(54)	6 795(9)	-84(4)	2 986(12)
C(14)	186(9)	$1755(5)$	6 482(9)	C(55)	6 407(9)	354(4)	4 176(12)
C(15)	-508(9)	$1407(5)$	$5113(9)$	C(56)	5 854(9)	991(4)	3 959(12)
C(16)	-317(9)	1490 (5)	3 725(9)	C(61)	5 683(8)	2 662(4)	3 809(10)
C(21)	3(8)	2 844(4)	$1556(11)$	C(62)	6 896(8)	2 580(4)	4 374(10)
C(22)	-715(8)	3 196(4)	2 488(11)	C(63)	7 503(8)	3 082(4)	5 552(10)
C(23)	$-1387(8)$	3 778(4)	2 102(11)	C(64)	$6897(8)$	3 665(4)	$6165(10)$
C(24)	-1340 (8)	$4007(4)$	783(11)	C(65)	5 683(8)	3 747(4)	5 600(10)
C(25)	-622(8)	3 655(4)	-149(11)	C(66)	5 076(8)	3 245(4)	4 422(10)

Table 8. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\operatorname{trans}-\left[\mathrm{PtCl}\left\{\mathrm{C} \equiv \mathrm{CC}(\mathrm{OH}) \mathrm{Me}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{PhMe}(2)$ and $\operatorname{trans}-[\mathrm{PtCl}\{\mathrm{C}=\mathrm{CC}(\mathrm{OH})-$ $\left.\mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$ (3)

(graphite-monochromated Mo- K_{α} radiation, $\lambda=0.7107 \AA$) in a random orientation. The reduced cells were obtained using the program TRACER. ${ }^{24}$ The unit-cell parameters were deduced from least-squares refinement of the 2θ values of 21 reflections having $2 \theta>26^{\circ}$ for all complexes.

Crystal data. $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt} \cdot \mathrm{H}_{2} \mathrm{O}$ (1), $M=903.9$, monoclinic, $a=15.473(5), b=21.725(6), c=13.439(4) \AA, \beta=$ $113.95(3)^{\circ}, U=4129(2) \AA^{3}, Z=4, \quad D_{c}=1.454 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1816, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=35.5 \mathrm{~cm}^{-1}$, space group $P 2_{1} / c$; crystal dimensions $0.32 \times 0.34 \times 0.32 \mathrm{~mm}$.
$\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{ClOP}_{2} \mathrm{Pt} \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8}$ (2), $\quad M=884.3$, triclinic, $a=$ 11.695(3), $b=19.690(6), c=9.214(2) \AA, \alpha=101.88(3), \beta=$ $104.26(3), \gamma=85.55(3)^{\circ}, U=2011(1) \AA^{3}, Z=2, D_{\mathrm{c}}=1.460$ $\mathrm{g} \mathrm{cm}^{-3}, F(000)=882, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=37.0 \mathrm{~cm}^{-1}$, space group $P \mathrm{I}$; crystal dimensions $0.32 \times 0.10 \times 0.40 \mathrm{~mm}$.
$\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{ClOP}_{2} \mathrm{Pt} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, \quad M=910.3$, triclinic, $a=15.544-$ (6), $\quad b=12.567(4), \quad c=11.719(3) ~ \AA \AA, \quad \alpha=91.12(3), \quad \beta=$ 105.36(3), $\gamma=111.39(3)^{\circ}, \quad U=2038(1) \AA^{3}, Z=2, \quad D_{c}=$
$1.483 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=912, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=36.6 \mathrm{~cm}^{-1}$, space group $P \mathrm{~T}$; crystal dimensions $0.34 \times 0.22 \times 0.51 \mathrm{~mm}$.

Intensities were recorded at room temperature by $\omega-2 \theta$ scans in the ranges $2 \theta 6-48^{\circ}$ for complexes (1) and (2) and $6-49^{\circ}$ for (3). No crystal decay or experimental instability was indicated by monitoring of standard reflections during the determinations. ψ Scans showed that crystal absorption effects could not be neglected, so the data for the three complexes were corrected for absorption by a semi-empirical method ${ }^{25}$ with maximum and minimum corrections of 1.112-1.003 for complex (1), $1.356-1.003$ for (2), and 1.133 1.003 for (3). 6396 [for (1)], 6276 [for (2)], and 6629 [for (3)] unique reflections were collected; of these 3110,3961 , and 4704 , respectively, having $I>3.0 \sigma(I)$, were considered observed and used in the structure solutions and refinements.

Solution and refinement. The structures of the three complexes were solved by conventional heavy-atom methods (Patterson and Fourier) and refined by blocked full-matrix

Table 9. Fractional atomic co-ordinates ($\times 10^{4}$) for trans- $\left[\mathrm{PtCl}\{\mathrm{C}=\mathrm{CC}(\mathrm{OH}) \mathrm{MeEt}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$ (3)

Atom	X / a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
$\mathrm{Pt}(1)$	2510 (1)	2 374(1)	20(1)	C(26)	4 772(3)	$1446(5)$	196(5)
$\mathrm{Cl}(1)$	1513(2)	2 722(3)	-1681(3)	C(31)	3 583(4)	3 350(4)	-2 156(5)
$P(1)$	3 413(2)	2 205(2)	-1214(2)	C(32)	3 959(4)	4 478(4)	- $1587(5)$
P(2)	1 657(2)	2 666(2)	$1265(2)$	C(33)	4 135(4)	5 401(4)	-2 254(5)
O(1)	5 256(6)	$1721(8)$	3 531(8)	C(34)	3 935(4)	5 195(4)	-3 489(5)
C(1)	3 316(6)	1 982(7)	$1438(8)$	C(35)	3 559(4)	4 068(4)	-4 057(5)
C(2)	3 706(8)	1 689(9)	2 273(9)	C(36)	3 383(4)	3 145(4)	- 3 391(5)
C(3)	4 203(8)	1 307(10)	3 399(9)	C(41)	2 294(4)	4 063(4)	2 197(5)
C(4)	$3832(14)$	13(13)	3 390(14)	C(42)	3 300(4)	4 563(4)	2 502(5)
C(5)	$4114(11)$	$1846(15)$	4 460(10)	C(43)	3 799(4)	5 629(4)	3 214(5)
C(6)	$3843(14)$	-619(14)	2 413(19)	C(44)	3 292(4)	6 193(4)	3 622(5)
O(2)	-330(10)	4 048(16)	$6129(14)$	C(45)	2 286(4)	5 692(4)	3 317(5)
C(7)	$1172(19)$	5 334(15)	7 099(19)	C(46)	$1787(4)$	4 627(4)	2 605(5)
C(8)	499(14)	4 391(18)	6 239(16)	C(51)	462(4)	2 681(5)	550(5)
C(9)	861(13)	3 754(17)	5 527(16)	C(52)	418(4)	3 565(5)	-136(5)
C(11)	2 853(4)	849(4)	-2 220(5)	C(53)	-476(4)	3 597(5)	-733(5)
C(12)	3 399(4)	484(4)	-2 787(5)	C(54)	- $1325(4)$	2 744(5)	-644(5)
C(13)	2 975(4)	-568(4)	- 3 524(5)	C(55)	-1280(4)	$1861(5)$	42(5)
C(14)	$2004(4)$	- $1254(4)$	-3 694(5)	C(56)	-387(4)	$1829(5)$	639(5)
C(15)	$1457(4)$	-889(4)	- 3 127(5)	C(61)	$1410(5)$	1 592(4)	2 279(5)
C(16)	$1882(4)$	163(4)	-2 389(5)	C(62)	$1429(5)$	$1862(4)$	3 448(5)
C(21)	4 638(3)	2 277(5)	- 524(5)	C(63)	$1160(5)$	985(4)	$4150(5)$
C(22)	$5434(3)$	3 154(5)	-707(5)	C(64)	874(5)	-162(4)	3 683(5)
C(23)	6 364(3)	3 200(5)	-171(5)	C(65)	856(5)	-432(4)	2 514(5)
C(24)	6 498(3)	2 369(5)	549(5)	C(66)	$1124(5)$	445(4)	$1812(5)$
C(25)	$5703(3)$	$1492(5)$	732(5)				

least squares with anisotropic thermal parameters for all nonhydrogen atoms except for the phenyl rings which were treated as rigid regular hexagons. All hydrogen atoms for complexes (1)-(3) were introduced in the final refinement as fixed contributors ($U=0.012 \AA^{2}$).
For complex (1) the hydrogen atoms of the water molecule and one of the two hydroxy-groups were located on a difference electron-density map; other hydrogen atoms except for that of the other hydroxy-groups were introduced in calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$). Final residual indices for (1) were $R=0.052, R^{\prime}=0.048$, and $S=2.5$ with weights $w=1.1025 /$ $\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.000238 \quad F_{0}^{2}\right] ; \quad R^{\prime}=\Sigma w^{\ddagger}|\Delta F| / \Sigma w^{\ddagger}\left|F_{0}\right| ; \quad S=$ $\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{ \pm} \quad\left(N_{\mathrm{o}}=\right.$ number of observed reflections, $N_{v}=$ number of parameters to be determined). A final electron-density difference map showed no features >0.3 e \AA^{-3}. Fractional atomic co-ordinates for the nonhydrogen atoms are in Table 6, and important bond lengths and angles are in Table 3.

For complex (2) the X-ray analysis revealed the presence of a toluene molecule of crystallization lying on a centre of symmetry, so its methyl carbon atom was assigned a site occupation factor of 0.5 . None of the hydrogen atoms could be located from a difference map. They were introduced in calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$) except for those of the hydroxy-group and toluene. The final R index was 0.053 . Unit weights were used since these gave acceptable agreement analyses. A final difference map showed no features of chemical significance (all $<0.4 \mathrm{e} \AA^{-3}$). Fractional atomic co-ordinates are in Table 7 (excluding hydrogen atoms), and important bond lengths and angles are in Table 8.

For complex (3) the X-ray analysis revealed the presence of an acetone molecule of crystallization. All the hydrogen atoms except for those of the hydroxy group and the acetone molecule were located in a difference map. Those of the acetone molecule were introduced in calculated positions ($\mathrm{C}-\mathrm{H} 1.08$ \AA). Final residual indices were $R=0.046, R^{\prime}=0.046$, and $S=1.75$ with weights $w=1.0647 /\left[\sigma^{2}\left(F_{0}\right)+0.000329 F_{0}{ }^{2}\right]$. A final difference map showed no features $>0.5 \mathrm{e} \AA^{-3}$. Table 9
lists the final fractional atomic co-ordinates (excluding hydrogen atoms), and important bond lengths and angles are in Table 8.

Complex neutral-atom scattering factors for $\mathrm{Pt}, \mathrm{Cl}, \mathrm{P}, \mathrm{O}$, and C were taken from ref. 26, those for H from ref. 27. All calculations were carried out on the CDC 7600 computer of the Centro di Calcolo dell'Italia Nord-Orientale, using the SHELX 76 system of programs. ${ }^{28}$

Acknowledgements

We thank the C.N.R. for financial support.

References

1 A. Furlani, I. Collamati, and G. Sartori, J. Organomet. Chem., 1959, 17, 453.
2 A. Furlani, P. Bicev, P. Carusi, and M. V. Russo, J. Polym. Sci., Polym. Lett., 1971, 9, 19.
3 J. Chatt and B. L. Shaw, J. Chem. Soc., 1959, 4020.
4 I. Collamati and A. Furiani, J. Organomet. Chem., 1969, 17, 457.

5 M. Bonamico, G. Dessy, V. Fares, M. V. Russo, and L. Scaramuzza, Cryst. Struct. Commun., 1977, 6, 39.
6 W. R. Cullen and F. L. Hou, Can. J. Chem., 1971, 49, 3404.
7 D. A. Harbourne and F. G. A. Stone, J. Chem. Soc. A, 1968, 1765.

8 A. Furlani and M. V. Russo, J. Organomet. Chem., 1979, 165, 101.

9 S. H. Mastin, Inorg. Chem., 1974, 13, 1003.
10 A. Furlani, P. Carusi, and M. V. Russo, J. Organomet. Chem., 1976, 116, 113.
11 A. Chiesi Villa, A. Gaetani Manfredotti, C. Guastini, P. Carusi, A. Furlani, and M. V. Russo, Cryst. Struct. Commun., 1977, 6, 623.

12 A. Chiesi Villa, A. Gaetani Manfredotti, C. Guastini, P. Carusi, A. Furlani, and M. V. Russo, Cryst. Struct. Commun., 1977, 6, 629.

13 I. Collmati, A. Furlani, and G. Attioli, J. Chem. Soc. A, 1970, 1964.

14 A. Furlani, M. V. Russo, S. Licoccia, and C. Guastini, Inorg. Chim. Acta, 1979, 33, L125.
15 C. J. Cardin, D. J. Cardin, M. F. Lappert, and K. W. Muir, J. Chem. Soc., Dalton Trans., 1978, 46 and refs. therein.

16 A. Furlani, S. Licoccia, M. V. Russo, A. Chiesi Villa, and C. Guastini, J. Chem. Soc., Dalton Trans., 1982, 2449 and refs. therein.
17 H. D. Empsall, B. L. Shaw, and A. J. Stringer, J. Organomet. Chem., 1975, 94, 131.
18 J. Chatt, G. A. Rowe, and A. Williams, Proc. Chem. Soc., 1957, 208.

19 P. B. Tripathy and D. M. Roundhill, J. Organomet. Chem., 1970, 24, 247.
20 A. Furlani, P. Carusi, and M. V. Russo, J. Organomet. Chem., 1974, 67, 315.
21 M. Keubler, R. Ugo, and F. Conti, J, Chem. Soc., Dalton Trans., 1975, 1081.

22 A. Furlani, M. V. Russo, A. Chiesi Villa, A. Gaetani Manfredotti, and C. Guastini, J. Chem. Soc., Dalton Trans., 1977, 2154.
23 K. A. Jensen, Z. Anorg. Allg. Chem., 1936, 229, 265.
24 S. L. Lawton and R. A. Jacobson, TRACER, a cell reduction program, Ames Laboratory, lowa State University, 1965.
25 A. C. T. North, D. C. Phillips, and F. C. Mathews, Acta Crystallogr., Sect. A, 1958, 24, 351.
26 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, pp. 99 and 149.
27 R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
28 G. M. Sheldrick, SHELX, University of Cambridge, 1976.

[^0]: \dagger cis-Bis(3-hydroxy-3-methylbut-1-ynyl)bis(triphenylphosphine)-platinum-water (1/1), trans-chloro(3-hydroxy-3-methylbut-1-ynyl)bis(triphenylphosphine)platinum-toluene (2/1), and trans-chloro(3-hydroxy-3-methylpent-1-ynyl)bis(triphenylphosphine)-platinum-acetone (1/1).
 Supplementary data available (No. SUP 23953, 58 pp.): structure factors, thermal parameters, H -atom co-ordinates for the three complexes. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii-xix.

